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B O D Y  I N  A S U P E R S O N I C  A I R  F L O W  

V.  A.  Lev in ,  V.  G .  G r o m o v  1, a n d  N.  E.  A f o n i n a  1 UDC 534.222.2 

The effect of a local source of energy in a supersonic flow on the aerodynamic drag and heat 
transfer of a spherically blunted body is studied numerically. Calculations are performed on 
the basis of the Navier-Stokes equations for a thermally equilibrium model of air. Data on 
the effect of the intensity and size of the energy source on the wave drag, friction, and heat 
transfer are obtained. Particular attention is given to studying the effect of drag reduction by 
means of a focused heat source. The gas-dynamic nature of this effect is studied. The limits 
of drag reduction are estimated, and optimal conditions of heat supply are determined. 

I n t r o d u c t i o n .  Recently, there has been growing interest in various methods  for controlled change 
in the flow structure and aerodynamic characteristics of flying vehicles by means of the remote action of 
a focused electromagnetic field (gas discharge). This problem was first formulated in Russia and has been 
studied in other countries. By now, the possibility of implementation of this idea into practice has been 
supported by laboratory experiments [1-4]. Chernyi [5, 6] studied numerically the interaction between a 
gas and an electromagnetic field and determined the gas-dynamic parameters of this process. Most gas- 
dynamic results were obtained with the use of the heat-source model according to which the absorption of 
electromagnetic energy is modeled by heat release with a specified intensity distr ibuted over a finite region 
of the flow. Georgievskii and. Levin [7] considered the linear formulation of the problem and showed that  
the energy supply at the segment in front of a narrow axisymmetric body is highly efficient for wave-drag 
reduction. These researches also showed [8] that  the flow field can be drastically changed and the wave drag 
can be decreased by supplying a small amount of energy in a local zone upst ream of the blunted body. The 
effect of local energy supply on the wave drag of axisymmetric sharp and blunt bodies of various configurations 
was studied in [9-12]. The  occurrence of separation zones and considerable reduction (up to 50%) in the 
wave drag were observed. The energy saved was found to exceed manyfold the energy consumed. 

Inviscid spatial flows with energy supply upstream of simple-shaped bodies were studied in [13-15]. 
The results obtained support  the fact that the lift force and stalling torque can be changed by the energy 

supplied to the incoming flow. 
Levin et al. [15, 16] calculated a supersonic flow of a viscous heat-conducting gas around a spherically 

blunted body. An analysis of these data  shows that  the drag can be significantly reduced even for ra ther  low 
values of heat-supply intensity; in this case, the thermal  load increases insignificantly. 

In this paper, we give results of a numerical analysis of a supersonic axisymmetric air flow near  the 
front part of a sphere in the presence of a heat source in the incoming flow. The  calculations are performed 
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on the basis of the Navier-Stokes equations for a thermally equilibrium model  of air, which were integrated 
by the finite-volume method.  The  effect of local energy supply on the flow s t ructure ,  aerodynamic forces, and 

heat transfer is studied as a function of the heat-supply intensity, heat-source size, and Mach and Reynolds 
numbers. 

G a s - P h a s e  M o d e l .  Air is considered as an ideal mixture of 02  and N2 with constant values of 

the molar concentrations Xm equal to 0.21 and 0.79, respectively. The rota t ional  and vibrational degrees 
of freedom axe described by the model "rigid ro ta to r  - -  harmonic oscillator" with characteristic vibrational 

temperatures  Tv, o2 = 2228 K and Tv, N~ ---- 3336 K. In this gas-phase model, the gas state at the time-space 
point (t, r )  can be described by a set of independent variables Z = (p, u,  T) ,  where p is the pressure, u is the 
velocity vector, and T is the temperature.  The equation of state is writ ten in the form 

p = pRaT/l~l, 

where p is the density, Ra is the universal gas constant ,  and/~r is the average molecular weight of the mixture.  
The internal energy e per unit mass and the heat  capacity for constant pressure cp are given by 

5 Ra Ra Tv, mXm 
e = ~ - ~ T + - ~ Z  e x p ( T ~ m / T ) -  1' 

m 

7 Ra Ra (T~,m/T) 2 exp (T~,m/T)Xm 
(- xp 

m 

The  viscosity of the mixture is determined as a power function of tempera ture  # = a/~T 0"683. The 

thermal conductivity of the mixture A is determined from the condition tha t  the Prandt l  number is P r  = 0.7. 
G o v e r n i n g  E q u a t i o n s .  To calculate an axisymmetric gas flow, we use the Navier-Stokes equations 

for the above-described gas-phase model. In the cylindrical coordinates (x ,y ,  qa), we write the governing 
equations in the integral form 

d U n ydS+f .Fydl=fnydS, 
S &S S 

where S is a fixed control region in the meridional plane (x, y), 6S is the boundary  of this region, n = (nz, ny) is 
the outward unit normal to 5S, U is the vector of conservative variables per  unit  volume, F = F inv + F vis is 

the sum of inviscid and viscid fluxes of the vector U through the boundary of the  region, and f~ is the vector 
of the source terms of the equations. For the above gas-phase model, these vectors are given by 

U = (p, pu, pv, peo} t, ~'~ = {0, 0, (p + 7"~,~)/y, Wh} t. 

Here u and v are the components  of the vector velocity u, eo = e+O.5(u.u)  is the total energy per unit  mass, 

ho = eo + p /p  is the total  enthalpy, r z  = (7"xx, ~'zy) and ry  = (vyx, vyy) axe the  viscous fluxes of momentum 
in the axial and radial directions, respectively, 7-~,~ is the azimuthal component  of the vector of the viscous 
flux of momentum in the axial direction, and q is the heat flux. The components  of the vectors of viscous 
momentum fluxes correspond to nonzero components  (taken with the opposi te  sign) of the viscous-stress 
tensor determined by the expression 

( 0 ~  V 2 0 

where/~ is the unit tensor. The  heat flux q is set in the form 
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puu + pnnz  vz 
F =  + , 

puv + trnny "ry 

puho q + UVz + wry 



0 T  
q = - A ~ r -  

It is assumed that  the intensity of gas heating w h is distributed in space according to the Gauss law 
with the center located at the flow axis: 

Wh ahp exp [-- (y2 + (x 2 2 = - x h )  

Here ah, Xh, and r h are the prescribed parameters of the source. 
N u m e r i c a l  M e t h o d .  The equations are integrated by the finite-volume method on a curvilinear 

structured grid. In this approach, the system of finite-difference equations comprises numerical analogs of 
the laws of conservation of mass, momentum,  and energy for quadrilateral cells that  cover the calculation 
domain and a difference approximation of boundary conditions. The approximate solution Zi,j is determined 
at the center of each cell (xi,j, Yi,j) and at the center of each side of the cell (xw,j, Yw,j) tha t  lies on the body 
surface. The cells are formed by intersection of two discrete sets of curves. The inviscid fluxes F ~  v through 
the cell boundaries are calculated from the exact solution of the Riemarm problem ZG = 9~(Z L, Z R) (9~ is 
an operator  of the solution of the problem). The left and right boundary values Z L and Z R inside the cells 
are calculated by limited one-dimensional extrapolation of the vector Z from the center of the cell toward 
the boundary. The  numerical values of the viscous fluxes F ~  s through the cell boundaries are calculated 
with the use of the second-order central  and one-sided difference formulas. The difference equations are 
solved by a two-layered implicit i terative scheme based on the implicit approximation of unsteady Navier-  
Stokes equations. The implicit iterative operator  is constructed with the use of the (=k)-splitting of the Jacobi 
matrices of the numerical fluxes. Its approximate inversion is performed by the block variant of the successive 
relaxation me thod  (Gauss-Seidel method)  with LU-decomposition of block tridiagonal matrices. 

R e s u l t s  o f  C a l c u l a t i o n  o f  a F l o w  a r o u n d  a S p h e r i c a l l y  B l u n t e d  B o d y  in  t h e  T h e r m a l  W a k e .  
First, we analyze the flow field s t ructure near a sphere of radius R, which is located in the thermal far wake. 
As the determining parameters of the flow, we choose the following dimensionless quantities: free-stream 
Mach number Moo, Reynolds number ReR,oo based on the free-stream parameters and the sphere radius R, 
vibrational temperatures  Tv, oJToo,  and Tv, NJToo, the ratio rh/R,  the ratio of the distance between the 
source center and stagnation point on the sphere to the radius of the sphere d/R,  the temperature  factor 
Tw/Too, where Tw is the surface temperature,  and the parameter  of heat-release intensity QH determined by 
the formula 

f ~hY QH ~- 27r poouoohoozcr~ dx dy 

(integration is performed over the entire calculation domain).  The parameter QH is the ratio of the total  
power of energy supply to the free-stream enthalpy flux through the characteristic section of the heat source. 

Calculations were performed for certain combinations of Mach and Reynolds numbers (Moo = 1.5, 
3, and 6 and ReR,cc = 103, 104, and 105) for d/R  = 7.5-30 and dimensionless intensity of the heat source 
QH = 0-63. The  temperature  factor was assumed to be constant and equal to 1.2. 

According to [15], the following three regimes of the flow around a sphere located in the heat-source 
wake can be distinguished: quasi-uniform, transitional, and abnormal regimes. Figure l a - c  shows the typical 
distributions of the pressure coefficient C v, friction coefficient Cf, and Stanton number Ch multiplied by 
Re 0.5 R, oo as functions of the distance s from the stagnation point on the sphere, respectively. These parameters 
were calculated by the formulas 

c p  = p /(o.5poo oo),-~ c s  = c h  = qw/(p  oo(ho,oo - 

where Pw, vw, and qw are the pressure, friction, and heat flux on the wall, respectively. 
These results were obtained for Moo = 3, ReR,oo = 104, and QH = 2. Curves 1, 2, and 3 in Fig. 1 

refer to the abnormal ( rh /R = 0.05, d/rh = 30), transitional ( rh /R = 0.35, d/rh = 17), and quasi-uniform 
(rh/R = 0.8, d/rh = 7.5) regimes, respectively. For comparison, Fig. 1 also shows these parameters obtained 

without heat supply (curves 4). 
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The quasi-uniform regime occurs for rh/R > 1. In this case, the free stream with parameters close to 
the axial values in the thermal wake is almost uniform. Since the Mach number in the wake and the axial 
component of  the momentum flux are smaller than their free-stream values, the distance from the bow shock 
wave to the body  surface increases, and the wall pressure and the wave drag can be lower than those without 
heat supply. The  maximum value and the total heat flux toward the body surface increase with increasing 
intensity of the  heat source. 

The transit ional  regime is observed if the flow upstream of  the body is significantly nonuniform, whereas 
the flow in the  shock layer remains attached [the quanti ty Cf  remains positive (Fig. lb)]. In this case, a 
stagnation zone with almost constant pressure and relatively high temperature  of the gas is formed near the 
central par t  of the sphere surface. It has the shape of a blunted cone that  smoothly joins the sphere surface. 
In this zone, the pressure distribution over the surface has a characteristic plateau with a reduced pressure 
that corresponds to the free-stream parameters  near the axis (Fig. la) .  In the neighborhood of the boundary 
of this plateau,  the heat flux reaches a maximum value determined by the density of the energy flux along 
the axis. 

A fur ther  decrease in the ratio rh/R leads to the appearance of a region of circulation flow with one 
or several vortices of different intensity in the shock layer, which is seen from the distribution of the friction 
coefficient (Fig. lb) .  Levin et al. [15] called this regime the abnormal regime. Beginning from a certain 
minimum value of QH, a separation zone is ~brmed and expands in the longitudinal and radial directions as 
the heat supply  increases. 

The  developed separation zone is also shaped like a blunted cone, but  it attaches to the sphere surface 
at a certain angle. Compression waves, which occur in the vicinity of the at tachment zone, converge to a 
barrel shock wave. Interacting with the bow shock wave, the barrel  shock deflects it toward the flow. This 
leads to the format ion of a centered rarefaction wave and tangential  discontinuity. For sufficiently large angles 
of deflection, a local subsonic zone occurs behind the bow shock wave. 
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A distinctive feature of the surface-pressure distribution for the abnormal regime is the occurrence of 
a peripheral maximum tha t  initiates the main circulation flow (Fig. la).  A local peak of the wall pressure 
is located near the boundary  of the circulation zone. Inside this zone, the pressure is reduced and close to 
the value of pressure in the transition regime for the same heat-supply parameter .  The peripheral maximum 

compensates part ly or completely (for small QH) the pressure decrease in the central  part  of the body surface. 
Therefore, the decrease in the drag due to the heat supply becomes pronounced for relatively large values of 
Q z  when the separation zone is sufficiently developed. In the region of detached flow, there is a relatively 
cold gas; therefore, for the abnormal regime, the intensity of heat transfer in the central part of the sphere 
surface can be much smaller than it would be without heat supply. At the site of flow reattachment, the 
intensity of heat transfer increases, and for large Q~/, the heat flux here can exceed the maximum value 
attainable without energy supply (Fig. lc). 

The  values of rh/R, for which the flow regimes change depend on the similarity parameters, which 
affect the structure of the thermal  wake. They decrease with an increase in QH and decrease in ReR,~. 

A e r o d y n a m i c  D r a g  a n d  H e a t  T rans fe r .  Figures 2-4 show the drag coefficient Cz and the maximum 
Stanton number over the surface Ch,ma~ calculated by the formulas 

Ch,m  =m xCh(s), 

7rR/2 ~R/2 
/ pwnxy / (7"xw.r~)y 

= 0 .5popular  2 dl, C/x = 0.5populaR2 dl. 
o o 

These quantities are normalized to their values without  heat supply and considered as functions of the 
dimensionless intensity of the heat source Qs. The parameter  Qs is proport ional  to the ratio of the total  
power of heat supply to the kinetic-energy flux of the incoming flow through the midsection of an aerodynamic 

body: 

f Qs = 2zr j.O.5Cx(O)poou3rrR 2 dx dy. 

Here C~(0) is the drag coefficient for the case where no energy is supplied. Th e  heat-exchange parameters  
Qs  and Q/~ are related (for Tm << T~,m) by the formula 

2 rh ~ ,~ 
Qs = Cz(O)(3'~ - 1)M 2 R-2 ~H,  

where 2~ is the ratio of specific heats. This representation of results allows one to  estimate the efficiency E 
of the heat contribution to drag reduction, which is determined as the ratio of the conserved energy to the 

energy consumed to heat the gas: 

E = (Cx(0) - Cx(Qs))O.5p~u3~rR 2 _ 1 - Cx(Qs) 
0.5QsCx(O)pocu 3~rR2 Qs ' 

where C~(Qs) = C~(Qs)/Cx(O). The distributions of this parameter are shown in Figs. 2a-4a by dashed 

c u r v e s .  

Figure 2 shows the effect of the heat-source size on drag reduction and heat  transfer for M ~  = 3, 
ReR, oo = 104, and Qs - 0-1. The data  corresponding to rh/R = 0.05 (curves 1) are obtained for d/rh = 30 
and those corresponding to rh/R = 0.1, 0.2, and 0.4 (curves 2-4) are obtained for d/rh= 15. One can 
see from Fig. 2a that,  as rh/R decreases, the efficiency of heat supply required to reduce the drag to  a 
specified value increases. The  minimum value of drag calculated for each size of  the source corresponds to 
the maximum value of the heat parameter ~)/~ = 63 for all rh/R. The min imum value of Cx(Qs)/Cx(O) 
decreases as rh/R increases, the efficiency of heat supply decreasing significantly. An analysis shows tha t  
the maximum reduction in drag can be obtained if a heat source of size of the order  of the sphere radius R 
is used and the intensity parameter  QH is sufficiently large. The limiting values of Cx(Qs)/Cx(O) decrease 
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from 0.68 for Moo = 1.5 to 0.32 for M~  = 6. The calculation results show that  realization of these regimes 
requires a contribution of energy that  exceeds manyfold the energy required to overcome the drag (without 
energy supply).  Moreover, under  these conditions, the intensity of heat exchange with the surface increases 
tenfold or more. 

From Fig. 2a, one can see that ,  for a relatively small size of the heat source, there is a tendency for 
further  decrease in aerodynamic drag with an increase in the heat-supply parameter  for QH > (~H. Probably, 
this is a t t r ibu ted  to the fact tha t  the wake radius increases with an increase in QH. 

Figure 2b shows the effect of the source size on the  dependence Ch,max(Qs). The data presented show 
that  the maximum heat flux toward the surface increases as Qs increases; however, the character of this 
dependence differs from that  of the dependence Cz(Qs). As a result, a considerable reduction in drag can be 
obtained for relatively small (twofold or threefold) increase in the intensity of surface heating. 

Figure 3 shows the effect of the Mach number on drag reduction and heat  transfer (curves 1-3 refer to 
Moo = 1.5, 3, and 6, respectively). The data  were ob ta ined  for rh/R = 0.1, l:{.eR,oo = 104, and d/rh = 15. One 
can see tha t  the efficiency of heat  supply used for drag reduction increases with increase in Moo (Fig. 3a). For 
example, the efficiency of the use of heat supply to reduce the drag by 20% increases by more than ten times 
as the Mach number increases from 1.5 to 6. At the same time, as is seen in Fig. 3b, the relative increase 

in the parameter  Ch,max(Qs)/Ch,max(O) caused by energy supply becomes much less intense with increasing 
Mach number,  except for the region of low values of heat-supply intensity (Qs < 0.02). 

Figure 4 shows the dependences Cz(Qs) and Ch,ma~(Qs) calculated for Ren, cr = 103, 104, and 105 
(curves 1-3, respectively), Moo = 3, rh/R = 0.1, and d/rh = 15. One can see from Fig. 4a that the effect of 
viscosity of the gas on drag reduction by means of energy delivered to the incoming flow becomes appreciable 
for ReR,~ ~< 104. With a decrease in the Reynolds number ,  the use of heat supply for drag reduction becomes 
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less efficient as a whole. The effect of the Reynolds number on surface heating is very pronounced (Fig. 4b). 
The greater the value of ReR,oo, the faster the maximum heat fluxes toward the sphere surface increase as 
the heat supplied to the incoming flow increases. 

Conclus ions .  A parametric study of a supersonic flow around a spherically blunted body in the 
presence of an energy-supply source has been performed. Calculations have been carried out on the basis of the 
Navier-Stokes equations for the model of thermally equilibrium air for a wide range of free-stream parameters 
and the intensity and size of the heat source. The effect of heat supply on the flow field, aerodynamic drag, 
and heating of the body surface has been studied. 

It is shown that the heat supplied to the incoming flow leads to a considerable reduction in the aero- 
dynamic drag. Maximum reduction in the drag can be obtained if an intense heat source with characteristic 
size of the order of the sphere radius is used. The limiting values of drag reduction decrease from 0.68 for 
Moo = 1.5 to 0.32 for Moo -- 6. However, the power of the heat source necessary to reach these limiting values 
exceeds considerably the power of an engine required to overcome the aerodynamic drag when moving in air 
without heat supply. 

The efficiency of the use of heat supply for drag reduction increases as the relative size of the heat 
source decreases and the Mach and Reynolds numbers increase. For example, for Moo --- 3, ReR, oo = 103, 
and r h / R  = 0.1, the drag of a hemisphere can be reduced by 20% for an efficiency of the heat supply greater 
than 2000% (E > 20). 

Heat supply intensifies heat exchange, but owing to the different character of the dependences of the 
drag and heating on the heat-supply intensity, it is possible to obtain a significant reduction in drag for a 
relatively small increase in thermal loads on the surface of the aerodynamic body. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01- 
00002). 
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